gwinferno.models.spline_perturbation.PowerlawSplineRedshiftModel#
- class PowerlawSplineRedshiftModel(n_splines, z_pe, z_inj, basis=<class 'gwinferno.interpolation.LogXBSpline'>)[source]#
Bases:
PowerlawRedshiftModel
Methods
log_prob
(z, lamb)normalization
(lamb, cs)Args:
prob
(z, dVdz, lamb, cs)prob Returns probability
- __call__(z, lamb, cs)[source]#
- Return type:
Array
- Args:
z (jnp.ndarray): Redshift lamb (float): Power-law exponent for redshift model cs (jnp.ndarray): B-Spline coefficients
- Returns:
jnp.ndarray:
- __init__(n_splines, z_pe, z_inj, basis=<class 'gwinferno.interpolation.LogXBSpline'>)[source]#
- Args:
n_splines (int): Number of basis functions used to create B-Spline z_pe (dict): Redshift parameter estimation z_inj (dict): Redshift injections basis (LogXBSpline, optional): Bases to be used in the spline perturbation. Defaults to LogXBSpline.