gwinferno.models.bsplines.separable.BSplineIndependentSpinTilts#
- class BSplineIndependentSpinTilts(n_splines1, n_splines2, ct1, ct2, ct1_inj, ct2_inj, kwargs1={}, kwargs2={}, **kwargs)[source]#
Bases:
object
A B-Spline model for the (cosine of) spin tilts of the primary and secondary components assuming they are independently distributed,
\[p(\cos{t_1}, \cos{t_2} \mid \mathbf{c}_1, \mathbf{c}_2) = p(\cos{t_1} \mid \mathbf{c}_1) p(\cos{t_2} \mid \mathbf{c}_2),\]where \(\mathbf{c}_1, \mathbf{c}_2\) are vectors of the
n_splines1
,n_splines2
basis spline coefficients for the primary and secondary component cosine spin tilts, respectively.- Parameters:
- n_splines1, n_splines2int
Number of basis functions, i.e., the number of degrees of freedom, of the primary and secondary component spline models.
- ct1, ct2array_like
Primary and secondary component spin cosine tilt parameter estimation samples for basis evaluation.
- ct1_inj, ct2_injarray_like
Primary and secondary component spin cosine tilt injection samples for basis evaluation.
- kwargs1, kwargs2dict, optional
Additional keyword arguments to pass to the basis spline model for the primary and secondary components.
- **kwargsdict, optional
Additional keyword arguments to pass to both basis spline models.
Methods
- __call__(pcoefs, scoefs, pe_samples=True)[source]#
Evaluate the joint probability density over the parameter estimation or injection samples. Use flag pe_samples to specify which samples are being evaluated (parameter estimation or injection).
- Parameters:
- pcoefs, scoefsarray_like
Spline coefficients for the (p)rimary and (s)econdary components.
- pe_samplesbool, default=True
If True, design matrix is evaluated across parameter estimation samples. If False, design matrix is evaluated across injection samples.
- Returns:
- array_like
Joint probability density for parameter estimation or injection samples.