gwinferno.models.bsplines.separable.BSplineIIDSpinMagnitudes#
- class BSplineIIDSpinMagnitudes(n_splines, a1, a2, a1_inj, a2_inj, **kwargs)[source]#
Bases:
object
A B-Spline model for the spin magnitude of both binary components assuming they are independently and identically distributed (IID),
\[p(a_1, a_2 \mid \mathbf{c}) = p(a_1 \mid \mathbf{c}) p(a_2 \mid \mathbf{c}),\]where \(\mathbf{c}\) is a vector of the
n_splines
basis spline coefficients.- Parameters:
- n_splinesint
Number of basis functions, i.e., the number of degrees of freedom of the spline model.
- a1, a2array_like
Primary and secondary component spin magnitude parameter estimation samples for basis evaluation.
- a1_inj, a2_injarray_like
Primary and secondary component spin magnitude injection samples for basis evaluation.
- **kwargsdict, optional
Additional keyword arguments to pass to the basis spline model.
Methods
- __call__(coefs, pe_samples=True)[source]#
Evaluate the joint probability density over the parameter estimation or injection samples. Use flag pe_samples to specify which samples are being evaluated (parameter estimation or injection).
- Parameters:
- coefsarray_like
Spline coefficients.
- pe_samplesbool, default=True
If True, design matrix is evaluated across parameter estimation samples. If False, design matrix is evaluated across injection samples.
- Returns:
- array_like
Joint probability density for parameter estimation or injection samples.