gwinferno.distributions.powerlaw_logit_pdf#
- powerlaw_logit_pdf(xx, alpha, low=None, high=None, low_fall_off=4.0, high_fall_off=4.0)[source]#
- powerlaw_logit_pdf pdf of high mass soft truncation powerlaw:
$$ p(x) propto x^{lpha}Theta(x-x_mathrm{min})Theta(x_mathrm{max}-x) $$
WARNING: this is not a normalized pdf!
- Args:
xx (array_like): points to evaluate pdf at alpha (float): power law index low (float): low end truncation bound high (float): high end truncation bound fall_off (float): scale of logistic unit to truncate distribution
- Returns:
array_like: pdf evaluated at xx