gwinferno.models.bsplines.separable.BSplinePrimaryBSplineRatio#
- class BSplinePrimaryBSplineRatio(n_splines_m, n_splines_q, m1, m1_inj, q, q_inj, mmax=100.0, m1min=3.0, m2min=3.0, kwargs_m={}, kwargs_q={}, **kwargs)[source]#
Bases:
object
B-Spline models for the primary mass and mass ratio,
\[p(m_1, q \mid \mathbf{c}_m, \mathbf{c}_q) = p(m_1 \mid \mathbf{c}_m) p(q \mid \mathbf{c}_q),\]where \(\mathbf{c}_m\) and \(\mathbf{c}_q\) are vectors of the
n_splines_m
andn_splines_q
basis spline coefficients for the primary mass and mass ratio, respectively.- Parameters:
- n_splines_m, n_splines_qint
Number of basis functions, i.e., the number of degrees of freedom, of the primary component mass and mass ratio spline models.
- m1array_like
Primary component mass parameter estimation samples for basis evaluation.
- m1_injarray_like
Primary component mass injection samples for basis evaluation.
- qarray_like
Mass ratio parameter estimation samples for basis evaluation.
- q_injarray_like
Mass ratio injection samples for basis evaluation.
- mmaxfloat, default=100
Maximum component mass.
- m1minfloat, default=3
Minimum primary component mass.
- m2minfloat, default=3
Minimum secondary component mass, setting lower bound on the mass ratio (\(q>m_{2,\mathrm{min}}/m_\mathrm{max}\)).
- kwargs_m, kwargs_qdict, optional
Additional keyword arguments to pass to the basis spline models for the primary component mass and mass ratio.
- **kwargsdict, optional
Additional keyword arguments to pass to both basis spline models.
Methods
- __call__(mcoefs, qcoefs, pe_samples=True)[source]#
Evaluate the joint probability density over the parameter estimation or injection samples. Use flag pe_samples to specify which samples are being evaluated (parameter estimation or injection).
- Parameters:
- mcoefs, qcoefsarray_like
Spline coefficients for the primary component mass and mass ratio.
- pe_samplesbool, default=True
If True, design matrix is evaluated across parameter estimation samples. If False, design matrix is evaluated across injection samples.
- Returns:
- array_like
Joint probability density for parameter estimation or injection samples.