gwinferno.models.bsplines.separable.BSplineIIDSpinTilts#
- class BSplineIIDSpinTilts(n_splines, ct1, ct2, ct1_inj, ct2_inj, **kwargs)[source]#
Bases:
object
A B-Spline model for the (cosine of) spin tilts of both binary components assuming they are independently and identically distributed (IID),
\[p(\cos{t_1}, \cos{t_2} \mid \mathbf{c}) = p(\cos{t_1} \mid \mathbf{c}) p(\cos{t_2} \mid \mathbf{c}),\]where \(\mathbf{c}\) is a vector of the
n_splines
basis spline coefficients.- Parameters:
- n_splines1int
Number of basis functions, i.e., the number of degrees of freedom of the spline model.
- ct1, ct2array_like
Primary and secondary component spin cosine tilt parameter estimation samples for basis evaluation.
- ct1_inj, ct2_injarray_like
Primary and secondary component spin cosine tilt injection samples for basis evaluation.
- **kwargsdict, optional
Additional keyword arguments to pass to the basis spline model.
Methods
- __call__(coefs, pe_samples=True)[source]#
Evaluate the joint probability density over the parameter estimation or injection samples. Use flag pe_samples to specify which samples are being evaluated (parameter estimation or injection).
- Parameters:
- coefsarray_like
Spline coefficients.
- pe_samplesbool, default=True
If True, design matrix is evaluated across parameter estimation samples. If False, design matrix is evaluated across injection samples.
- Returns:
- array_like:
Joint probability density for parameter estimation or injection samples.