gwinferno.models.bsplines.separable.BSplineEffectiveSpinDims#
- class BSplineEffectiveSpinDims(n_splines_e, n_splines_p, chieff, chip, chieff_inj, chip_inj, kwargs_e={}, kwargs_p={}, **kwargs)[source]#
Bases:
object
B-Spline models for the effective spin (\(\chi_\mathrm{eff}\)) and effective precession (\(\chi_\mathrm{p}\)) of binaries,
\[p(\chi_\mathrm{eff}, \chi_\mathrm{p} \mid \mathbf{c}_\mathrm{eff}, \mathbf{c}_\mathrm{p}) = p(\chi_\mathrm{eff} \mid \mathbf{c}_\mathrm{eff}) p(\chi_\mathrm{p} \mid \mathbf{c}_\mathrm{p}),\]where \(\mathbf{c}_\mathrm{eff}\) and \(\mathbf{c}_\mathrm{p}\) are vectors of the
n_splines_e
andn_splines_p
basis spline coefficients for the effective spin and effective precession, respectively.- Parameters:
- n_splines_e, n_splines_pint
Number of basis functions, i.e., the number of degrees of freedom, of the (e)ffective spin and effective (p)recession spline models.
- chieff, chiparray_like
Effective spin and effective precession parameter estimation samples for basis evaluation.
- chieff_inj, chip_injarray_like
Effective spin and effective precession injection samples for basis evaluation.
- kwargs_e, kwargs_pdict, optional
Additional keyword arguments to pass to the basis spline models for the effective spin and effective precession.
- **kwargsdict, optional
Additional keyword arguments to pass to both basis spline models.
Methods
- __call__(ecoefs, pcoefs, pe_samples=True)[source]#
Evaluate the joint probability density over the parameter estimation or injection samples. Use flag pe_samples to specify which samples are being evaluated (parameter estimation or injection).
- Parameters:
- ecoefs, pcoefsarray_like
Spline coefficients for the effective spin and effective precession.
- pe_samplesbool, default=True
If True, design matrix is evaluated across parameter estimation samples. If False, design matrix is evaluated across injection samples.
- Returns:
- array_like
Joint probability density for parameter estimation or injection samples.